The Allalin is a nanometer resolution spectroscopy instrument, based on a unique and patented system including an optical collection objective integrated within the SEM column.
One platform, multiple possibilities of measurements
This platform offers a very large range of spectroscopic analysis thanks to its multiple sources (electronic, laser in continuous or pulsed mode) and many types of detectors (PMT, CCD/Streak cameras, TCSPC/ADP… detectors, Raman…). In addition, the system can be equipped with various options such as : EBIC system, nanoprobes, HV transfer unit and can welcome small samples from few µm size to wafers up to 6 inches.
The spectroscopic analyses can be conducted at any temperature from RT down to 10K thanks to an integrated Helium cryostat and copper braid coupling ensuring high stability and very low drift.
The base system is a SEM – spectroscopic platform on which multiple options can be adapted:
Sources
- Continuous/pulsed electronic source
- Continuous/pulsed laser
Spectrometers
- up to 2 spectrometers on the platform
Detectors
Continuous detectors
- PMT
- UV-Visible (EM-)CCD camera (from 180nm to 1050nm)
- InGaAs detector (from 900 to 2200nm)
Time-resolved detectors
- Streak camera
- TCSPC detector
Stages
- Nano-positioning stage (cryo-compatible)
- 3’/6’ wafer stage
Options
- Nanoprobes (up to 4 probes)
- Raman line
- EBIC/EBAC
- Electronics & optoelectronics (GaN, InP, SiC…)
- Photovoltaic cells (GaAs, CdTe, Perovskites…)
- Light emitting diodes (MicroLEDs)
- 2D materials (Graphene, BN, WS2…)
- Noble metals (plasmonic)
- Nano-micro particles
- Nano-micro wires/rods
- Photonic crystals
- Quantum wells & quantum dots
- Minerals, glasses, ceramics and gemstones
- Inorganic coatings
- Polymers layers
- Organic materials
- Biological samples, cells, vesicles
- …
Applications
Application Notes
III-V Semiconductors (GaN, InGaN, GaAs…)
- Point Defects in InGaN/GaN Core–Shell Nanorods: Role of the Regrowth Interface, K. Loeto, G. Kusch, P-M. Coulon, SM. Fairclough, E. Le Boulbar, I. Girgel, PA. Shields and RA. Oliver, Nano Express 2 (2021) 014005.
https://iopscience.iop.org/article/10.1088/2632-959X/abe990/meta - Quantitative Assessment of Carrier Density by Cathodoluminescence. I. GaAs Thin Films and Modeling, H.-L. Chen, A. Scaccabarozzi, R. de Lepinau, F. Oehler, A. Lemaitre, J.-C. Harmand, A. Cattoni, S. Collin, Phys. Rev. Applied 15, 024006 (2021).
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.024006
II-VI Semiconductors (CdTe)
- Imaging CdCl2 Defect Passivation and Formation in Polycrystalline CdTe Films by Cathodoluminescence, Thomas Bidaud, John Moseley, Mahisha Amarasinghe, Mowafak Al-Jassim, Wyatt K. Metzger, and Stephane Collin, Phys. Rev. Materials 5, 064601.
https://pubs.acs.org/doi/10.1021/acsami.7b18963 - Exceeding 200ns Lifetimes in Polycrystalline CdTe Solar Cells, Ablekim, T., Duenow, J. N., Perkins, C. L., Moseley, J., Zheng, X., Bidaud, T. & Metzger, W. K., Solar RRL (2021).
https://doi.org/10.1002/solr.202100173
Perovskites
- Using pulsed mode scanning electron microscopy for cathodoluminescence studies on hybrid perovskite films, Orri, J. F., Tennyson, E. M., Kusch, G., Divitini, G., Macpherson, S., Oliver, R., Ducati, C., Stranks, S., Nano Express (2021).
https://iopscience.iop.org/article/10.1088/2632-959X/abfe3c/meta - Halide Homogenization for High-Performance Blue Perovskite Electroluminescence, L. Cheng, C. Yi, Y. Tong , L. Zhu, G. Kusch , X. Wang, X. Wang, T. Jiang, H. Zhang , J. Zhang, C. Xue, H. Chen, W. Xu, D. Liu, R.A. Oliver , R.H. Friend , L. Zhang , N. Wang , W. Huang , J. Wang, AAAS Research, Volume 2020, Article ID 9017871.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877380/
Plasmonics
- Cathodoluminescence Nanoscopy of 3D Plasmonic Networks, R. Ron, M.S. Zielinski, A.Salomon, Nano Lett. 2020, 20, 11, 8205–8211 https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.0c03317
- Visualization of Plasmon-Induced Hot Electrons by Scanning Electron Microscopy, Elad Segal, Matan Galanty, Hannah Aharon, and Adi Salomon, J. Phys. Chem. C, 2019, 123, 50, 30528–30535
https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b08202
Monolayers
- Quantitative Nanoscale Absorption Mapping: A Novel Technique To Probe Optical Absorption of Two-Dimensional Materials, Marco Negri, Luca Francaviglia, Dumitru Dumcenco, Matteo Bosi, Daniel Kaplan, Venkataraman Swaminathan, Giancarlo Salviati, Andras Kis, Filippo Fabbri, Anna Fontcuberta i Morral, Nano Lett. 2020, 20, 1, 567-576.
https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b04304
Time-resolved Cathodoluminescence
- Using Cathodoluminescence from Continuous and Pulsed-Mode SEM to Elucidate the Nanostructure of Hybrid Halide Perovskite Materials, ORRI, J. Ferrer, KOSASIH, F., SUN, Y., et al. Microscopy and Microanalysis, 2022, vol. 28, no S1, p. 2006-2008.
https://doi.org/10.1017/S1431927622007796 - Carrier dynamics at trench defects in InGaN/GaN quantum wells revealed by time-resolved cathodoluminescence, KUSCH, Gunnar, COMISH, Ella J., LOETO, Kagiso, et al. Nanoscale, 2022, vol. 14, no 2, p. 402-409.
https://doi.org/10.1039/D1NR06088K - Uncovering the carrier dynamics of AlInGaN semiconductors using time-resolved cathodoluminescence, Kagiso Loeto, Materials Science and Technology (2022)
https://doi.org/10.1080/02670836.2022.2064635
Degree of Polarisation
- Polarized cathodoluminescence for strain measurement, M. Fouchier, N. Rochat, E. Pargon, J. P. Landesman, Rev. Sci. Instrum. 90, 043701 (2019); doi: 10.1063/1.5078506.
https://aip.scitation.org/doi/abs/10.1063/1.5078506
Updated list of scientific references can be find here : https://attolight.com/scientific-references/