Hybridized SEM – Spectroscopic Platform

SEM – Cathodoluminescence – Photoluminescence
Spectroscopic Analysis – Pump & Probe
Electrical Measurements – Nanoprobes

The Allalin is a nanometer resolution spectroscopy instrument, based on a unique and patented system including an optical collection objective integrated within the SEM column.

One platform, multiple possibilities of measurements
This platform offers a very large range of spectroscopic analysis thanks to its multiple sources (electronic, laser in continuous or pulsed mode) and many types of detectors (PMT, CCD/Streak cameras, TCSPC/ADP… detectors, Raman…). In addition, the system can be equipped with various options such as : EBIC system, nanoprobes, HV transfer unit and can welcome small samples from few µm size to wafers up to 6 inches.

The spectroscopic analyses can be conducted at any temperature from RT down to 10K thanks to an integrated Helium cryostat and copper braid coupling ensuring high stability and very low drift.

The base system is a SEM – spectroscopic platform on which multiple options can be adapted:


  • Continuous electronic (included)
  • Pulsed electronic
  • Continuous laser
  • Pulsed laser


  • up to 2 spectrometers (with 2 exits)

Continuous detectors

  • PMT
  • CCD camera (from VUV to MIR)

Time-resolved detectors

  • Streak camera
  • TCSPC detectors
  • ADP detectors


  • Raman


  • Nanopositioning stage
  •  Cryostage
  • 3’/6’ wafer stage

Other options upon request

  • Electronics & optoelectronics (GaN, InP, SiC…)
  • Photovoltaic cells (GaAs, CdTe, Perovskites…)
  • Light emitting diodes (MicroLEDs)
  • 2D materials (Graphene, BN, WS2…)
  • Noble metals (plasmonic)
  • Nano-micro particles
  • Nano-micro wires/rods
  • Photonic crystals
  • Quantum wells & quantum dots
  • Minerals, glasses, ceramics and gemstones
  • Inorganic coatings
  • Polymers layers
  • Organic materials
  • Biological samples, cells, vesicles

Application Notes

III-V Semiconductors (GaN, InGaN, GaAs…)

II-VI Semiconductors (CdTe)

  • Imaging CdCl2 Defect Passivation and Formation in Polycrystalline CdTe Films by Cathodoluminescence, Thomas Bidaud, John Moseley, Mahisha Amarasinghe, Mowafak Al-Jassim, Wyatt K. Metzger, and Stephane Collin, Phys. Rev. Materials 5, 064601.
  • Exceeding 200ns Lifetimes in Polycrystalline CdTe Solar Cells, Ablekim, T., Duenow, J. N., Perkins, C. L., Moseley, J., Zheng, X., Bidaud, T. & Metzger, W. K., Solar RRL (2021).


  • Using pulsed mode scanning electron microscopy for cathodoluminescence studies on hybrid perovskite films, Orri, J. F., Tennyson, E. M., Kusch, G., Divitini, G., Macpherson, S., Oliver, R., Ducati, C., Stranks, S., Nano Express (2021).
  • Halide Homogenization for High-Performance Blue Perovskite Electroluminescence, L. Cheng, C. Yi, Y. Tong , L. Zhu, G. Kusch , X. Wang, X. Wang, T. Jiang, H. Zhang , J. Zhang, C. Xue, H. Chen, W. Xu, D. Liu, R.A. Oliver , R.H. Friend , L. Zhang , N. Wang , W. Huang , J. Wang, AAAS Research, Volume 2020, Article ID 9017871.



  • Quantitative Nanoscale Absorption Mapping: A Novel Technique To Probe Optical Absorption of Two-Dimensional Materials, Marco Negri, Luca Francaviglia, Dumitru Dumcenco, Matteo Bosi, Daniel Kaplan, Venkataraman Swaminathan, Giancarlo Salviati, Andras Kis, Filippo Fabbri, Anna Fontcuberta i Morral, Nano Lett. 2020, 20, 1, 567-576.

Degree of Polarisation