By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.

Applications on Photovoltaic Materials

Find out how CL can investigate QD nanowires
Abstract

In order for photovoltaic (PV) power generation to provide a significant fraction of the world’s energy needs, the cost of panels, per Watt generated, must be reduced.

The best prospects for low-cost, high volume photovoltaic power generation are thin film inorganic compounds including CdTe and Cu (In, Ga) Se2 (CIGS). These two materials presently make-up almost 20% of solar panel sales, with it likely that this fraction will increase, due to the following advantages over Si:

  • The direct band gap of these materials means that a greatly reduced thickness of material, 2–5 μm, was needed compared to Si, 100–400 μm.
  • This reduced thickness leads to greatly lowered requirements for crystalline quality in the solar absorber, it opens the door for a wider variety of possible production routes; lowering costs and increasing throughput.

Cathodoluminescence is able to provide characterization of these thin film PV materials with a spatial resolution unmatched by other techniques. The Attolight system in particular provides the following advantages:

  • Defects such as grain boundaries and dislocations can be analysed with regard to both their signal intensity and their CL spectroscopic profile. This can provide information about both the electrical activity of the defects and any chemical segregation effects.
  • The highly stable cooling stage allows high-resolution scans down to 10 K, giving information about the spatial distribution of dopants and defects levels. Additionally, the temperature dependence of excited states can be determined, giving activation energies for these states.

The local measurement of CL emission lifetimes provides unprecedented characterization of defects and composition gradients; carrier lifetimes are an important factor in PV where they must diffuse to the contacts in order to be collected.

This combination of data concerning the defects, structure and energy levels in photovoltaic materials provides a very full analysis.

SEM image of a CdTe/CdS photovoltaic heterojunction in cross-section.

CL map of the same cross section color-coded by emission frequency. The interdiffusion of sulfur at the junction is clear in the CL dataset.

References
Published on
November 5, 2024
Discover our products used to realize this application
Applications

More applications

Text Link
Power Electronics
Text Link
Quantum technologies
Text Link
Sensors
Text Link
Life sciences
Text Link
Energy Materials
Text Link
RF / power transistors
Text Link
Optoeletronics
Text Link
Application

CL from beam-sensitive optoelectronic materials - hybrid halide perovskites

Find out how CL quantify defects in optoelectronic materials
Text Link
Application

Applications on Defect Visualization and Counting in Optoelectronic Materials

Find out how CL can quantify defects in optoelectronic materials
Text Link
Application

Applications on Semiconducting Diamond

Find out how CL can investigate semiconducting properties of diamond
Text Link
Application

Applications on Hyperspectral Mapping with high Spatial Resolution for Optoelectronic Devices

Find out how CL can defect defects in optoelectronic materials
Text Link
Application

Applications on GaN for Power Electronic

Find out how CL can investigate QD nanowires
Text Link
Application

Applications on ZnO micro/nanowire Materials

Find out how CL can investigate QD nanowires

Ready to revolutionize your materials characterization approach?

Get in touch with us today to discover how our state-of-the-art cathodoluminescence tools can elevate your research and industry applications.
Already more than 30 systems installed globally!