By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.
Background moutain Attolight
Säntis 300

Full Wafer Cathodoluminescence Microscope

The Säntis 300 is an automated process control system for wafers up to 300 mm, offering large field-of-view, fast scanning, and simultaneous SEM imaging and CL spectra acquisition.

Dashboard mockup
Characteristics

About our Full Wafer Cathodoluminescence-SEM Equipment

The system's quantitative CL technology offers unparalleled speed, accuracy, and repeatability with a large 300 μm field of view. Multiple acquisition modes enable detailed defect analysis, material inhomogeneity mapping, and dynamic process tracking, such as dopant activation or elemental fluctuations.

Small-diameter wafers and miscellaneously-shaped substrates can be manually affixed to larger susceptors for automated handling by the tool, making the Säntis 300 well-suited to failure analysis and research applications where quick turnaround time is important.

Dashboard mockup
Features

About our Full Wafer Cathodoluminescence Microscope

The standard Säntis 300 configuration includes a top-loading loadlock into which wafers are manually placed using a wafer wand. The loadlock facilitates quick loading and unloading operations, increasing throughput compared to our Allalin system. The tool can be upgraded to include support for wafer cassettes (FOUPs) or even a full EFEM with automated wafer handling for integration in fully-automated fabs.

  • Fully automated quantitativeCL metrology
  • Simultaneous SEM imaging & spectra acquisition
  • High throughput & automated wafer handling
  • Wafer bow mapping & alignment
  • Loadlock for fast sample exchange
  • Loadlock for rapid sample loading and unloading

System Configurations: Includes manual or automated loading options for enhanced throughput, with potential upgrades for full automation. It is optimized for cleanroom environments and equipped with height mapping sensors to maintain precision during measurements.

Trusted by top semiconductor companies and prestigious research institutes worldwide

Applications

Related Applications Using the Säntis 300

Discover how the Allalin platform can support your research.

Text Link
Process development
Text Link
Materials Science
Text Link
Micro/Nanowire
Text Link
GaN device
Text Link
Power electronics
Text Link
Life Science
Text Link
Optoelectronics
Text Link
Application

Non-destructive quality control of micron-sized light emitting diodes

We will show how spectrally resolved quantitative CL can address this challenge.
Text Link
Application

Comprehensive defect review and classification for SiC

We show how spectrally-resolved quantitative CL can be used to classify various defects in SiC
Text Link
Application

Non-destructive control of epitaxial layer uniformity in GaN power devices

We will show how spectrally-resolved quantitative CL can address this challenge

Scientific references

Nanoscale Cathodoluminescence and Conductive Mode Scanning Electron Microscopy of van der Waals Heterostructures RAMSDEN, Hugh, SARKAR, Soumya, WANG, Yan, et al. ACS Nano, 2023 2023
Design Rules for Addressing Material Asymmetry Induced by Templated Epitaxy for Integrated Heteroepitaxial On‐Chip Light Sources SHANG, Chen, HUGHES, Eamonn T., BEGLEY, Matthew R., et al. Advanced Functional Materials, 2023, p. 2304645 2023
Composition variations in Cu(In,Ga)(S,Se)2 solar cells: not a gradient, but an interlaced network of two phases PROT, Aubin JC, MELCHIORRE, Michele, DINGWELL, Felix, et al. APL Materials, 1 October 2023; 11 (10): 101120 2023
The Realization of the Nanoscale Bar-Codes Based on CDS Branched Nanostructure GUO, Shuai, WANG, Xuefeng, ZHAO, Xiaoyu et al. Available at SSRN 4464387 2023

Scientific references

Simultaneous Cathodoluminescence and Electron Microscopy Cytometry of Cellular Vesicles Labeled with Fluorescent Nanodiamonds NAGARAJAN, S., PIOCHE-DURIEU, C., TIZEI, L. H. G., FANG, C.-Y., BERTRAND, J.-R., LE CAM, E., CHANG, H.-C., TREUSSTART, F., KOCIACK, M. Nanoscale, 2016, 8, 11588 2016
Structure and Luminescence in Long Persistence Eu, Dy, and B Codoped Strontium Aluminate Phosphors: The Boron Effect AKMEHMET, G. I., ŠTURM, S., BOCHER, L., KOCIACK, M., AMBROŽIČ, B., OW-YANG, C. W. Journal of the American Ceramic Society, 2016, 99, 2175–2180 2016
Bright UV Single Photon Emission at Point Defects in h-BN BOURRELLIER, R., MEURET, S., TARARAN, A., STÉPHAN, O., KOCIACK, M., TIZEI, L. H. G., ZOBELLI, A. Nano Letters, 2016, 16, 4317–4321 2016
InGaN Nanowires with High InN Molar Fraction: Growth, Structural and Optical Properties ZHANG, X., LOURENÇO-MARTINS, H., MEURET, S., KOCIACK, M., HAAS, B., ROUVIÈRE, J.-L., JOUNEAU, P. H., BOUGEROL, C., AUZELLE, T., JALABERT, D., BIQUARD, X., GAYRAL, B., DAUDIN, B. Nanotechnology, 2016, 27, 195704 2016

Ready to revolutionize your materials characterization approach?

Get in touch with us today to discover how our state-of-the-art cathodoluminescence tools can elevate your research and industry applications.
Already more than 30 systems installed globally!